Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;1), B(3;0;-1), C(0;21;-19) và mặt cầu ( S ) : x - 1 2 + y - 1 2 + z - 1 2 = 1 . M(a;b;c) là điểm thuộc mặt cầu (S) sao cho biểu thức T = 3 M A 2 + 2 M B 2 + M C 2 đạt giá trị nhỏ nhất. Tính tổng a+b+c
A. 14 5
B. 0
C. 12 5
D. 12
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 9 và điểm M ( a ; b ; c ) ∈ ( S ) sao cho biểu thức P=2a+2b+2c đạt giá trị nhỏ nhất. Tính T=a+b+c.
A. 2
B. 1
C. -2
D. -1
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (1; 1; 2), B (-1; 0; 4), C (0; -1; 3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z - 1)2 = 1. Khi biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng:
A. 2
B. 6
C. 6
D. 2
Trong không gian với hệ tọa độ Oxyz,cho hai điểm A(1;0;2), B(3;1;-1)và mặt phẳng (P): x+y+z-1=0 Gọi M(a;b;c) ∈ ( P ) sao cho 3 M A → - 2 M B → đạt giá trị nhỏ nhất. Tính S = 9 a + 3 b + 6 c
A. 4
B. 3
C. 2
D. 1
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 0 ; 1 ; 1 , B 3 ; 0 ; − 1 , C 0 ; 21 ; − 19 và hai mặt cầu S : x − 1 2 + y − 1 2 + z − 1 2 = 1 . M a , b , c là điểm thuộc mặt cầu (S) sao cho biểu thức T = 3 M A 2 + 2 M B 2 + M C 2 đạt giá trị nhỏ nhất. Tính tổng a+b+c
A. 14 5
B. 0
C. 12 5
D. 12
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(2;1;3), B(1;-1;2), C(3;-6;1). Điểm M(x;y;z) thuộc mặt phẳng (Oyz) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất. Tính giá trị của biểu thức P = x+y+z
A. P = 0
B. P = 2P = 0
C. P = 6
D. P = -2
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(8;5;-11), B(5;3;-4), C(1;2;-6) và mặt ( S ) : ( x - 2 ) 2 + ( y - 4 ) 2 + ( z - 1 ) 2 = 9 . Gọi điểm M(a;b;c) là điểm trên (S) sao cho M A → - M B → - M C → đạt giá trị nhỏ nhất. Hãy tìm a+b
A. 6
B. 2
C. 4
D. 9
Trong không gian với hệ tọa độ Oxyz, cho điểm A (3;1;0), B (-9;4;9) và mặt phẳng (P) có phương trình 2x-y+z+1=0. Gọi I (a;b;c) là điểm thuộc mặt phẳng (P) sao cho |IA - IB| đạt giá trị lớn nhất. Khi đó tổng a+b+c bằng:
A. -4
B. 22
C. 13.
D. -13.
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1