PB

Trong không gian với hệ tọa độ Oxyz, cho điểm A (3;1;0), B (-9;4;9) và mặt phẳng (P) có phương trình 2x-y+z+1=0. Gọi I (a;b;c) là điểm thuộc mặt phẳng (P) sao cho |IA - IB| đạt giá trị lớn nhất. Khi đó tổng a+b+c bằng:

A. -4 

B. 22 

C. 13. 

D. -13.

CT
8 tháng 10 2017 lúc 13:55

Chọn A

Thay tọa độ hai điểm A (3;1;0), B (-9;4;9) vào vế trái phương trình mặt phẳng (P), ta có

2. 3-1+0+1=6 > 0 và 2. (-9)-4+9+1 = -12 < 0.

Nên suy ra, hai điểm A, B nằm khác phía với mặt phẳng (P).

Gọi A' (-1;3;-2) là điểm đối xứng với điểm A qua mặt phẳng (P). Ta có

Dấu “=” xảy ra khi và chỉ khi A', B, I thẳng hàng và I nằm ngoài đoạn A'B. Suy ra I là giao điểm của đường thẳng A'B và mặt phẳng (P).

Ta có , nên suy ra phương trình đường thẳng A'B .

Tọa độ điểm I là nghiệm của hệ phương trình

Vậy I (7;2;13) nên a+b+c=7+2+ (-13)=-4.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết