Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P): x + (m+1)y – 2z + m = 0 và (Q): 2x – y +3 = 0 với m là tham số thực. Để mặt phẳng (P) và (Q) vuông góc thì giá trị của m bằng bao nhiêu?
A. m = -5
B. m = 1
C. m = 3
D. m = -1
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P) : x + ( m + 1)y - 2z + m = 0 và ( Q) : 2x - y + 3 = 0 với m là tham số thực. Để ( P ) và ( Q ) vuông góc thì giá trị của m bằng bao nhiêu
A. m = -5
B. m = 1
m = 3
D. m = -1
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng P : x + 2 y - z + 3 = 0 và Q : x - 4 y + m - 1 z + 1 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q)
A. m = -6
B. m = -3
C. m = 1
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, có bao nhiêu giá trị của tham số m để cho hai mặt phẳng α : x + y + z - 1 = 0 và β : x + y + m 2 z + m - 2 = 0 song song với nhau?
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz cho đường thẳng ∆ : x - 10 5 = y - 2 1 = z + 2 1 . Xét mặt phẳng P : 10 x + 2 y + m z + 11 = 0 với m là tham số thực. Tìm giá trị của m để mặt phẳng (P) vuông góc với đường thẳng ∆
A. m = -2
B. m = 2
C. m = -52
D. m = 52
Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ a → = 3 ; - 2 ; m , b → = 2 ; m ; - 1 . Giá trị thực của tham số m để hai vectơ a → và b ⇀ vuông góc với nhau là
A. m=2
B. m=1
C. m=-2
D. m=-1
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P) : 2x + 3y – mz – 2 = 0 và (Q) : x + y + 2z + 1 = 0. Tìm m để hai mặt phẳng (P) và (Q) vuông góc với nhau
A. m = 5 2
B. m = 3 2
C. m = 9 2
D. m = 9 2
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : 2 x + 3 y – m z – 2 = 0 v à ( Q ) : x + y + 2 z + 1 = 0 . Tìm m để hai mặt phẳng (P) và (Q) vuông góc với nhau.
A. m = 5 2
B. m = 3 2
C. m = 9 2
D. m = 7 2
Trong không gian Oxyz, cho hai mặt phẳng ( α ): x+y+z-1=0 và ( β ): 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để ( α ) ⊥ ( β ) là
A. -1
B. 0
C. 1
D.-4