PB

Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto  làm vectơ chỉ phương và song song với mặt phẳng (P): 2x+y+z=0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:

A. 15

B. 13

C. 16

D. 14

CT
14 tháng 2 2018 lúc 9:34

Chọn A

Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).

Suy ra (Q):2x+y+z-3=0.

Do Δ // (P) nên Δ (Q)).

D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).

Gọi d là đường thẳng đi qua N và vuông góc (P), 

Ta có N’ d => N' (-4+2t;2+t;1+t); N’ (Q) => t = 4/3

  cùng phương 

Do |a|, |b| nguyên tố cùng nhau nên chọn 

Vậy  |a| + |b| + |c| = 15.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết