Trong không gian Oxyz cho 2 đường thẳng d 1 : x + 3 2 = y + 2 - 1 = z + 2 - 4 ; d 2 : x + 1 3 = y + 1 2 = z - 2 3 và mặt phẳng ( P ) : x + 2 y + 3 z - 7 = 0 Đường thẳng vuông góc với mặt phẳng (P), cắt d 1 và d 2 có phương trình là:
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x+2y+3z-5=0. Đường thẳng Δ vuông góc với (P) cắt d1 và d2 có phương trình là:
Trong không gian Oxyz, cho mặt phẳng Oxyz và hai đường thẳng d 1 : x + 1 - 1 = y - 6 2 = z 1 và d 2 : x - 1 - 3 = y - 2 - 1 = z + 4 4 Đường thẳng vuông góc với (P) và cắt cả hai đường thẳng d 1 và d 2 có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x + 3 1 = y - 2 - 1 = z - 1 2 , d 2 : x - 2 2 = y - 1 1 = z + 1 1 , và mặt phẳng (P):x+3y+2z-5=0. Đường thẳng vuông góc với (P), cắt cả d 1 và d 2 có phương trình là:
Trong không gian Oxyz, cho mặt phẳng ( α ) có phương trình d 1 : x = 1 + 3 t y = 4 + t z = - 1 + 2 t , d 2 : x - 2 - 3 = y 2 = z - 4 - 2 .Phương trình đường thẳng ∆ nằm trong mặt phẳng ( α ) , cắt cả hai đường thẳng d 1 , d 2 là
A. x + 2 8 = y - 1 - 7 = z + 3 1
B. x - 2 - 8 = y + 1 7 = z - 3 - 1
C. x + 2 8 = y - 1 7 = z + 3 - 1
D. x - 2 - 8 = y 7 = z - 3 1
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 2 - 1 = y - 1 3 = z - 1 2 và d 2 : x = 1 - 3 t y = - 2 + t z = - 1 - t . Phương trình đường thẳng d nằm trong ( α ) : x + 2 y - 3 z - 2 = 0 và cắt hai đường thẳng d1; d2 là:
A. x + 3 5 = y - 2 - 1 = z - 1 1
B. x + 3 - 5 = y - 2 1 = z - 1 - 1
C. x - 3 - 5 = y + 2 1 = z + 1 - 1
D. x + 8 1 = y - 3 3 = z - 4
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 2 = z - 3 - 2 và mặt phẳng (P): 2x - 2y + z - 3 = 0, phương trình đường thẳng ∆ nằm trong mặt phẳng (P), cắt d và vuông góc với d là
A. x = 2 - 2 t y = 1 - 5 t z = - 5 - 6 t
B. x = - 2 - 2 t y = - 1 - 5 t z = 5 - 6 t
C. x = - 2 - 2 t y = - 1 + 5 t z = 5 - 8 t
D. x = - 2 - 2 t y = 1 - 5 t z = 5 + 6 t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+z-4=0 và hai đường thẳng d 1 : x - 3 2 = y - 2 1 = z - 6 5 , d 2 : x - 6 3 = y 2 = z - 1 1 . Phương trình đường thẳng d nằm trong mặt phẳng (P) và cắt hai đường thẳng d1, d2 là:
Trong không gian Oxyz cho đường thẳng d: x = 1 - t y = - 2 + t z = 3 + 2 t và mặt phẳng (P): x-2y+3z-2=0. Đường thẳng ∆ nằm trong mặt phẳng (P) đồng thời cắt và vuông góc với đường thẳng dcó phương trình là:
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?