Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ) : x + y + z - 4 = 0 mặt cầu ( S ) : x 2 + y 2 + z 2 - 8 x - 6 y - 6 z + 18 = 2 và điểm M(1;1;2) ∈ ( α ) . Đường thẳng d đi qua M nằm trong mặt phẳng ( α ) và cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho dây cung AB có đọ dài nhỏ nhất. Đường thẳng d có một véc tơ chỉ phương là
A. u 1 → = ( 2 ; - 1 ; - 1 )
B. u 3 → = ( 1 ; 1 ; - 2 )
C. u 2 → = ( 1 ; - 2 ; 1 )
D. u 4 → = ( 0 ; 1 ; - 1 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm A(1;-1;2), song song với mặt phẳng (P): 2x-y-z+3=0, đồng thời tạo với đường thẳng △ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm A(1;-1;2), song song với mặt phẳng (P): 2x-y-z+3=0, đồng thời tạo với đường thẳng ∆ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian tọa độ Oxyz cho đường thẳng △ có phương trình x - 1 2 = y + 1 - 1 = z 2 và mặt phẳng ( α ) có phương trình x+y-z-2=0 Tính côsin của góc tạo bởi đường thẳng △ và mặt phẳng ( α )
Trong không gian Oxyz, cho mặt phẳng ( α ) : 3 x + y + z = 0 và đường thẳng △ : x - 3 1 = y + 4 - 2 = z - 1 2 . Phương trình của đường thẳng d nằm trong mặt phẳng ( α ) , cắt và vuông góc với đường thẳng △ là
Trong không gian Oxyz cho điểm M(2;1;1) mặt phẳng α : x+y+z-4=0 và mặt cầu (S): x - 3 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
Trong không gian Oxyz, mặt phẳng qua điểm A(-1;1;2) và song song với mặt phẳng ( α ): 2x-2y+z-1=0 có phương trình là