Bài 3: Phương trình đường thẳng trong không gian

CA

Trong không gian Oxyz, cho đường thẳng (d): (x+2)/2=(y-1)/2=z/1 và điểm I(2;1;-1) . Mặt cầu tâm I tiếp xúc với đường thẳng (d) và cắt trục Ox tại hai điểm A,B. Tính độ dài đoạn AB

NL
19 tháng 3 2019 lúc 23:06

\(d:\frac{x+2}{2}=\frac{y-1}{2}=\frac{z}{1}\Rightarrow\) d có 1 vtcp \(\overrightarrow{u_d}=\left(2;2;1\right)\)\(M\left(-2;1;0\right)\in d\)

\(\overrightarrow{IM}=\left(-4;0;1\right)\Rightarrow R=d\left(I;d\right)=\frac{\left|\left[\overrightarrow{IM};\overrightarrow{u_d}\right]\right|}{\left|\overrightarrow{u_d}\right|}=\frac{\sqrt{2^2+6^2+8^2}}{\sqrt{2^2+2^2+1^2}}=\frac{2\sqrt{26}}{3}\)

Khoảng cách từ I đến trục Ox:

\(a=d\left(I;Ox\right)=\sqrt{1^2+1^2}=\sqrt{2}\)

\(\Rightarrow AB=2\sqrt{R^2-a^2}=\frac{2\sqrt{86}}{3}\)

Bình luận (0)

Các câu hỏi tương tự
AH
Xem chi tiết
TM
Xem chi tiết
TB
Xem chi tiết
AH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
AH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết