Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x-z+1=0. Vecto pháp tuyến của mặt phẳng (P)
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x - z + 1 = 0 . Tọa độ một véctơ pháp tuyến của mặt phẳng (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y - 4z + 7= 0. Tìm tọa độ véctơ pháp tuyến của (P).
A. (-2;3;-4)
B. (-2;-3;-4)
C. (2;3;-4)
D. (2;-3;-4)
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2z -1 = 0 và 2x - z + 3 = 0. Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2y - 5z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): -3x+2z-1=0 . Vectơ nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)
A. (3;2;-1)
B. (-3;2;-1)
C. (-3;0;2)
D. (3;0;2)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B((-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình -2x + 2y -z -3 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:
A. (-2;2;-3)
B. (4;-4;2)
C. (-4;4;2)
D. (0;0;-3)
Trong hệ trục tọa độ Oxyz, cho phương trình mặt phẳng (P): x-2y+3=0. Vecto pháp tuyến của (P) là
A. (1;-2;3)
B. (1;-2;0)
C. (1;-2)
D. (1;3)