Trong không gian với hệ trục tọa độ Oxyz cho A(1;2;3), B(2;0;-1) và mặt phẳng (P): x+y+z-1=0 Tọa độ giao điểm C của đường thẳng AB và mặt phẳng (P) là
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-3;-1;3), B(-1;3;1) và là mặt phẳng trung trực của đoạn thẳng AB. Một vectơ pháp tuyến của (P) có tọa độ là:
A. (-1;3;1)
B. (-1;1;2)
C. (-3;-1;3)
D. (-2;1;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 3y + z + 2 = 0 Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ∆ vuông góc với mặt phẳng (P)?
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 1 = y - 1 2 = z - 2 - 1 và mặt phẳng (P): 2x+y+2z-1=0 Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x + 3 2 = y + 1 1 = z - 3 1 và mặt phẳng P : x + 2 y - z + 5 = 0 . Tìm tọa độ giao điểm M của đường thẳng d và mặt phẳng (P).
A. M(-1 ;0 ;4)
B. M(1 ;0 ;-4)
D. M(-5 ;-2 ;2)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z + 1 = 0 và (Q): 2x + 3y - z = 0. Viết phương trình chính tắc của đường thẳng giao tuyến D của hai mặt phẳng (P) và (Q). Chọn khẳng định sai
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 1 2 = y 1 = z - 2 1 , mặt phẳng (P): x + y - 2z + 5 = 0 và A (1; -1; 2). Đường thẳng Δ cắt d và (P) lần lượt tại M và N sao cho A là trung điểm của đoạn thẳng MN. Một vectơ chỉ phương của Δ là:
A . u → = 2 ; 3 ; 2
B . u → = 1 ; - 1 ; 2
C . u → = - 3 ; 5 ; 1
D . u → = 4 ; 5 ; - 13
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x = 1 - t y = 2 t z = 2 + 2 t , t ∈ ℝ và mặt phẳng (P): x + y -z -1 = 0 Giao điểm M của d và (P) có tọa độ là
A. M(1;0;2)
B. M(3;−4;−2)
C. M(0;2;4)
D. M(1;1;1)