Ôn tập chương 2: Hàm số bậc nhất

H24

Trong cùng 1 mặt phẳng toạ độ Oxy cho 3 điểm \(A\left(2;4\right);B\left(-3;-1\right);C\left(-2;1\right)\)

chứng minh 3 điểm A,B,C thẳng hàng

AH
16 tháng 11 2018 lúc 15:58

Lời giải:

Gọi phương trình đường thẳng $AB$ là $y=ax+b$

Khi đó: \(\left\{\begin{matrix} 4=2a+b\\ -1=-3a+b\end{matrix}\right.\Rightarrow 5a=5\Rightarrow a=1\Rightarrow b=2\)

Vậy ptđt $AB$ có dạng $y=x+2$

Lại thấy: \(1\neq (-2)+2\) nên $C$ không thể thuộc đường thẳng $AB$

Suy ra $A,B,C$ không thẳng hàng. Bạn xem lại đề.

Bình luận (0)
H24
16 tháng 11 2018 lúc 16:03

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right);C\left(x_3;y_3\right)\)

Độ dài AB: \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(=\sqrt{\left(2-\left(-3\right)\right)^2+\left(4-\left(-1\right)^2\right)}\) \(=5\sqrt{2}\) (đvđd)

Độ dài BC: \(BC=\sqrt{\left(\left(-3\right)-\left(-2\right)\right)^2+\left[\left(-1\right)-1\right]^2}\)

\(=\sqrt{\left(-1\right)^2+\left(-2\right)^2}\) \(=\sqrt{1+4}=\sqrt{5}\)(đvđd)

\(AC=\sqrt{\left(2-\left(-2\right)\right)^2+\left(4-1\right)^2}=5\)(đvđd)

\(\Rightarrow AB+BC\ne AC\)\(\Rightarrow A,B,C\) không thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
AP
Xem chi tiết
WT
Xem chi tiết