PP

Cho hai phương trình:

\(x^3+3x^2+2x=0\) và \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) (với x là ẩn số). Tìm các giá trị của a để hai phương trình trên chỉ có một nghiệm chung duy nhất

AT
4 tháng 6 2021 lúc 20:05

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

Bình luận (3)
VX
5 tháng 6 2021 lúc 2:38

\(x^3+3x^2+2x=0\left(1\right)\)

\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow x\left(x^2+x+2x+2\right)=0\)

\(\Leftrightarrow x\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\)            \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy phương trình (1) có nghiệm \(x=0;x=-2;x=-1\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1+a\right)=0\left(2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2+2x+1+a=0\end{matrix}\right.\)

\(\Rightarrow x=-1\) là (1) nghiệm của phương trình (2)

Đặt \(F\left(x\right)=\left(x+1\right)\left(x^2+2x+1+a\right)\)

Có phương trình (1) và (2) có nghiệm chung là =1

Để (1) và (2) có 1 nghiệm chung duy nhất 

Thì \(\left\{{}\begin{matrix}F\left(0\right)\ne0\\F\left(-2\right)\ne0\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1+a\right)\ne0\\\left(-2+1\right)\left(4-4+1+a\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\-\left(a+1\right)\ne0\end{matrix}\right.\)            \(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\a\ne-1\end{matrix}\right.\)

-Chúc bạn học tốt-

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
HK
Xem chi tiết
CP
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
CA
Xem chi tiết
NT
Xem chi tiết
NQ
Xem chi tiết