Vì ABCD là hình bình hành
nên vecto AB=vecto DC
=>\(\left\{{}\begin{matrix}x_C-x_D=x_B-x_A\\y_C-y_D=y_B-y_A\end{matrix}\right.\Leftrightarrow D\left(-4;1\right)\)
\(\overrightarrow{EA}=\left(-1-x;-y\right)\)
\(\overrightarrow{EB}=\left(3-x;1-y\right)\)
\(\overrightarrow{EC}=\left(-x;2-y\right)\)
Theo đề, ta có: \(\left\{{}\begin{matrix}-1-x+3\left(3-x\right)-2\left(-x\right)=0\\-y+3\left(1-y\right)-2\left(2-y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1-x+9-3x+2x=0\\-y+3-3y-4+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+8=0\\-2y-1=0\end{matrix}\right.\Leftrightarrow E\left(4;-\dfrac{1}{2}\right)\)