Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Trên mặt phẳng, cho đoạn thẳng BC=2a(a>0), lấy 1 điểm A bất kì sao cho tam giác ABC nhọn. Các đường cao AD,BR,CF cắt nhau tại H (D,E,F lần lượt nắm trên các cạnh BC, CA, AB). Trên các đoạn HB, HC lần lượt lấy M, N sao cho \(\widehat{AMC}=\widehat{BNA}=90^o\)

a) chứng minh tam giác AMN cân

b) tìm GTLN của BN.CM theo a

NL
6 tháng 11 2021 lúc 16:34

Tính chất cơ bản của tam giác với 3 đường cao: \(\Delta AEF\sim\Delta ABC\) (bài toán quen thuộc chắc em tự c/m được)

\(\Rightarrow AF.AB=AE.AC\)

Trong tam giác vuông ABN với đường cao NF:

\(AN^2=AF.AB\)

Trong tam giác vuông ACM:

\(AM^2=AE.AC\)

\(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)

b. Hệ thức lượng: \(BN^2=BF.AB\) ; \(CM^2=CE.AC\)

\(\Delta ABD\sim\Delta CBF\) (2 tam giác vuông chung góc B)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BD}{BF}\Rightarrow BF.AB=BD.BC\) (1)

Hoàn toàn tương tư, \(\Delta ADC\sim\Delta BEC\Rightarrow CE.AC=CD.BC\) (2)

Cộng vế (1) và (2) \(\Rightarrow BF.AB+CE.AC=\left(BD+CD\right)BC=BC^2\)

\(\Rightarrow BN^2+CM^2=BC^2\)

\(\Rightarrow BN.CM\le\dfrac{1}{2}\left(BN^2+CM^2\right)=\dfrac{1}{2}BC^2=2a^2\)

Dấu "=" xảy ra khi tam giác cân tại A

Bình luận (1)
NL
6 tháng 11 2021 lúc 16:34

undefined

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LV
Xem chi tiết
DM
Xem chi tiết
NK
Xem chi tiết
DN
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết