Ta có: \(\dfrac{A+T}{G+X}=\dfrac{A_1+A_2+T_1+T_2}{G_1+G_2+X_1+X_2}\) \(=\dfrac{2\left(A_1+A_2\right)}{2\left(G_1+G_2\right)}=\dfrac{A_1+A_2}{G_1+G_2}\left(0\right)\)
- Lại có: \(X_2+G_2=G_1+G_2=70\%\left(1\right)\)
- Ta có thêm: \(\left\{{}\begin{matrix}A_1+G_1=50\%\\A_2+X_2=60\%\\X_2+G_2=70\%\end{matrix}\right.\) \(\rightarrow\left\{{}\begin{matrix}T_2+X_2=50\%\left(2\right)\\A_2+X_2=60\%\left(3\right)\\X_2+G_2=70\%\left(4\right)\end{matrix}\right.\)
- Do đó: \(\left(2\right)+\left(3\right)+\left(4\right)=\) \(T_2+A_2+X_2+G_2+2X_2=50\%+60\%+70\%\)
\(\rightarrow2X_2=180\%-\left(T_2+A_2+X_2+G_2\right)\) \(=180\%-100\%=80\%\rightarrow X_2=40\%\)
Ta có: \(A_1+X_2=50\%\rightarrow A_1=10\%\) và \(A_2+X_2=60\%\rightarrow A_2=20\%\)
\(\Rightarrow A_1+A_2=30\%\left(5\right)\)
- Thay $(1)$ và $(5)$ vào $(0)$ ta được: \(\dfrac{A_1+A_2}{G_1+G_2}=\dfrac{30\%}{70\%}=\dfrac{3}{7}\)