Bài 2: Hàm số bậc nhất.

QN

trên cùng hệ trục tọa độ , cho parabol ( P):y=x2 và đường thẳng (d): y=(2m-1) x-m2+2 ( m là tham số ) . a) Vẽ parabol ( P) . b) Khi m=2 . Tìm tọa độ giao điểm của ( P ) và (d) bằng phép toán . c) Tìm điều kiện của tham số m để (P) và ( d) cắt nhau tại 2 điểm phân biệt

NT
25 tháng 5 2022 lúc 20:14

b: Khi m=2 thì \(y=\left(2\cdot2-1\right)x-2^2+2=3x-2\)

Phương trình hoành độ giao điểm là:

\(x^2-3x+2=0\)

=>x=2 hoặc x=1

Khi x=2 thì y=4

Khi x=1 thì y=1

c: Phương trình hoành độ giao điểm là:

\(x^2-\left(2m-1\right)x+m^2-2=0\)

\(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8=-4m+9\)

Để (P) cắt (d) tại hai điểm phân biệt thì -4m+9>0

=>-4m>-9

hay m<9/4

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
Xem chi tiết
NT
Xem chi tiết
DL
Xem chi tiết
CD
Xem chi tiết
KC
Xem chi tiết