Ẩn danh

Tính

\(C=cos\dfrac{\pi}{5}+cos\dfrac{2\pi}{5}+cos\dfrac{3\pi}{5}+...+cos\dfrac{9\pi}{5}\)

NT
4 tháng 9 2024 lúc 8:33

\(...C=\left(cos\dfrac{\pi}{5}+cos\dfrac{9\pi}{5}\right)+\left(cos\dfrac{2\pi}{5}+cos\dfrac{8\pi}{5}\right)+\left(cos\dfrac{3\pi}{5}+cos\dfrac{7\pi}{5}\right)+\left(cos\dfrac{4\pi}{5}+cos\dfrac{6\pi}{5}\right)+cos\dfrac{5\pi}{5}\)

\(C=\left(cos\dfrac{\pi}{5}-cos\dfrac{\pi}{5}\right)+\left(cos\dfrac{2\pi}{5}-cos\dfrac{2\pi}{5}\right)+\left(cos\dfrac{3\pi}{5}-cos\dfrac{3\pi}{5}\right)+\left(cos\dfrac{4\pi}{5}-cos\dfrac{4\pi}{5}\right)+cos\pi=-1\)

Sử dụng công thức \(cos\left(\pi-x\right)=-cosx\) (2 góc bù nhau)

Bình luận (0)
NT
3 tháng 9 2024 lúc 20:38

\(C=cos\left(\dfrac{\Omega}{5}\right)+cos\left(\dfrac{2\Omega}{5}\right)+...+cos\left(\dfrac{9\Omega}{5}\right)\)

\(=\left(cos\left(\dfrac{\Omega}{5}\right)+cos\left(\dfrac{9\Omega}{5}\right)\right)+\left(cos\left(\dfrac{2}{5}\Omega\right)+cos\left(\dfrac{8}{5}\Omega\right)\right)+\left(cos\left(\dfrac{3}{5}\Omega\right)+cos\left(\dfrac{7}{5}\Omega\right)\right)+cos\left(\dfrac{4}{5}\Omega\right)+cos\left(\dfrac{6}{5}\Omega\right)+cos\left(\dfrac{5}{5}\Omega\right)\)

\(=\dfrac{1}{2}\cdot cos\left(\dfrac{\left(\dfrac{9}{5}\Omega-\dfrac{\Omega}{5}\right)}{2}\right)\cdot cos\left(\dfrac{\left(\dfrac{9}{5}\Omega+\dfrac{\Omega}{5}\right)}{2}\right)+\dfrac{1}{2}\cdot cos\left(\dfrac{\left(\dfrac{8}{5}\Omega+\dfrac{2}{5}\Omega\right)}{2}\right)\cdot cos\left(\dfrac{\dfrac{8}{5}\Omega-\dfrac{2}{5}\Omega}{2}\right)+...+cos\left(\Omega\right)\)

\(=\dfrac{1}{2}\cdot cos\Omega\cdot cos\left(\dfrac{4}{5}\Omega\right)+\dfrac{1}{2}\cdot cos\Omega\cdot cos\left(\dfrac{3}{5}\Omega\right)+...+cos\Omega\)

\(=cos\Omega\left(\dfrac{1}{2}\cdot cos\left(\dfrac{4}{5}\Omega\right)+\dfrac{1}{2}\cdot cos\left(\dfrac{3}{5}\Omega\right)+\dfrac{1}{2}\cdot cos\left(\dfrac{2}{5}\Omega\right)+\dfrac{1}{2}\cdot cos\left(\dfrac{\Omega}{5}\right)\right)+\left(-1\right)\)

\(=\dfrac{-1}{2}\cdot\left[cos\left(\dfrac{4}{5}\Omega\right)+cos\left(\dfrac{\Omega}{5}\right)+cos\left(\dfrac{3}{5}\Omega\right)+cos\left(\dfrac{2}{5}\Omega\right)\right]-1\)

\(=\dfrac{-1}{4}\cdot\left[cos\left(\dfrac{\dfrac{4}{5}\Omega+\dfrac{\Omega}{5}}{2}\right)\cdot cos\left(\dfrac{\dfrac{4}{5}\Omega-\dfrac{\Omega}{5}}{2}\right)+cos\left(\dfrac{\dfrac{3}{5}\Omega+\dfrac{2}{5}\Omega}{2}\right)\cdot cos\left(\dfrac{\dfrac{3}{5}\Omega-\dfrac{2}{5}\Omega}{2}\right)\right]-1\)

\(=\dfrac{-1}{4}\cdot cos\left(\dfrac{\Omega}{2}\right)\left[cos\left(\dfrac{3}{10}\Omega\right)-cos\left(\dfrac{1}{10}\Omega\right)\right]-1\)

=-1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết