a: \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
\(=x^5y-\dfrac{1}{5}x^3y^3-x^2y\)
b: \(\left(\dfrac{1}{2}x-5\right)\left(x^2-2x+3\right)\)
\(=\dfrac{1}{2}x^3-x^2+\dfrac{3}{2}x-5x^2+10x-15\)
\(=\dfrac{1}{3}x^3-6x^2+\dfrac{23}{2}x-15\)
a: \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)
\(=x^5y-\dfrac{1}{5}x^3y^3-x^2y\)
b: \(\left(\dfrac{1}{2}x-5\right)\left(x^2-2x+3\right)\)
\(=\dfrac{1}{2}x^3-x^2+\dfrac{3}{2}x-5x^2+10x-15\)
\(=\dfrac{1}{3}x^3-6x^2+\dfrac{23}{2}x-15\)
Thực hiện phép tính:
a)(4x4y-7x2y+3y).(2y-3x2y)
b)(x2+3x-\(\dfrac{3}{2}\)x3):(2x)-\(\dfrac{x}{2}\).(1-\(\dfrac{3}{2}\)x)
c)(-2x3-x-3+5x2):(3-2x)
BÀI 1: NHÂN ĐƠN THỨC VỚI ĐA THỨC
6) 5x +3 ( x2 -x - 1)
7) -\(\dfrac{2}{3}\)x ( -x4y2 -2x2 - 10y2)
8) \(\dfrac{2}{3}\)xy ( 3 x2y -3xy + y2)
9) (-2x).(3x2 - 2x +4)
10) 3x4 ( -2x3 + 5x2 - \(\dfrac{2}{3}\)x + \(\dfrac{1}{3}\))
Thực hiện phép tính:
a) (x2y - xy + xy2 + y3). 3xy2; b)(2x3-9x2+19x-15):(x2-3x+5)
c)(x3 - 3x2 + x - 3):( x - 3)
1. Làm tính nhân:
a. 3x(5x2 - 2x - 1)
b. (x2+2xy -3)(-xy)
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1)
Thực hiện phép tính:
a, (2x-5)(5-x)
b, \(\dfrac{1}{3x-2}\)-\(\dfrac{1}{3x+2}\)
c, \(\dfrac{3}{x-3}\)-\(\dfrac{6x}{x^2-9}\)+\(\dfrac{x}{x+3}\)
a) (2x + 3y)2
b) (x + \(\dfrac{1}{4}\))2
c) (x2 + \(\dfrac{2}{5}\)y) . (x2 - \(\dfrac{2}{5}\)y)
d) (2x + y2)3
e) (3x2 - 2y)2
f) (x + 4) (x2 - 4x + 16)
g) (x2 - \(\dfrac{1}{3}\)) . (x4 + \(\dfrac{1}{3}\)x2 + \(\dfrac{1}{9}\))
Bài 1 (2,0 điểm). Thực hiện các phép tính:
a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.
Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:
a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.
Bài 3 (1,0 điểm). Tìm x biết:
a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =
Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.
a) Tính AC và diện tích °ABC.
b) Từ H vẽ HM ^ AB tại M, HN ^ AC tại N. Chứng minh AMHN là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm D sao cho AD = AN. Chứng minh tứ giác ADMH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A. Gọi I, E lần luợt là trung điểm của AH và BH. Chứng minh CI ^ HK.
Bài 1 giải phương trình:
a) (4x2+4x+1)-x2=0
b) x2-2x+1=4
c) x2-5x+6=0
Bài 2: giải phương trình
a) \(\dfrac{2x-5}{x+5}\)= 3
b) \(\dfrac{5}{3x+2}\)= 2x-1
c) \(\dfrac{x^2-6}{x}\)= x+\(\dfrac{3}{2}\)
d) \(\dfrac{1}{x-2}\)+3= \(\dfrac{x-3}{2-x}\)
e) \(\dfrac{3x-2}{x+7}\)=\(\dfrac{6x+1}{2x-3}\)
f) \(\dfrac{x-2}{x+2}\) - \(\dfrac{3}{x-2}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
bài 1:
a) (2x3 - x2 + 5x) : x b) (3x4 - 2x3 + x2) : (-2x) c) (-2x5 + 3x2 - 4x3) : 2x2
d) (x3 - 2x2y + 3xy2) : \(\left(-\dfrac{1}{2}x\right)\) e) [ 3(x-y)5 - 2(x-y)4 + 3(x-y)2] : 5(x-y)2
a) (3x5 y2 +4x3y3-5x2y4 ) :2x2y2