1: \(=\left(\dfrac{2}{3}:2\right)^4=\left(\dfrac{1}{3}\right)^4\)
2: \(=\left(\dfrac{2}{3}\right)^4\cdot3^4=2^4=16\)
3: \(=\left(\dfrac{1}{2}\right)^{3+4}=\left(\dfrac{1}{2}\right)^7\)
4: \(=\dfrac{40^6\cdot30^6}{40^3}=40^3\cdot30^6\)
1: \(=\left(\dfrac{2}{3}:2\right)^4=\left(\dfrac{1}{3}\right)^4\)
2: \(=\left(\dfrac{2}{3}\right)^4\cdot3^4=2^4=16\)
3: \(=\left(\dfrac{1}{2}\right)^{3+4}=\left(\dfrac{1}{2}\right)^7\)
4: \(=\dfrac{40^6\cdot30^6}{40^3}=40^3\cdot30^6\)
1) (3x-2)/3-2=(4x+1)/42) (x-3)/4+(2x-1)/3=(2-x)/63) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)4) (x+4)/5-x+4=x/3-(x-2)/25) (4-5x)/6=2(-x+1)/2 6) (-(x-3))/2-2=5(x+2)/4 7)2(2x+1)/5-(6+x)/3=(5-4x)/158) (7-3x)/2-(5+x)/5=1 9)(x-1)/2+3(x+1)/8=(11-5x)/310)(3+5x)/5-3=(9x-3)/4
Giải phương trình
1) (3x-2)/3-2=(4x+1)/4
2) (x-3)/4+(2x-1)/3=(2-x)/6
3) 1/2 (x+1)+1/4 (x+3)=3-1/3 (x+2)
4) (x+4)/5-x+4=x/3-(x-2)/2
5) (4-5x)/6=2(-x+1)/2
6) (-(x-3))/2-2=5(x+2)/4
7)2(2x+1)/5-(6+x)/3=(5-4x)/15
8) (7-3x)/2-(5+x)/5=1
9)(x-1)/2+3(x+1)/8=(11-5x)/3
10)(3+5x)/5-3=(9x-3)/4
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1.giải các phương trình sau:
a, 3(2x+1)/4 - 5x+3/6 = 2x-1/3 - 3-x/4
b, 19/4 - 2(3x-5)/5 = 3-2x/10 - 3x-1/4
c, x-2*3/2+3 + x-3*5/3+5 + x-5*2/5+2 = 10
d, x-3/5*7 + x-5/3*7 + x-7/3*5 = 2(1/3 + 1/5 + 1/7)
2. giải các phương trình:
a, x-1/9 + x-2/8 = x-3/7 + x-4/6
b, (1/1*2 + 1/2*3 + 1/3*4 + ... + 1/9*10) (x-1) + 1/10x = x- 9/10
Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 só với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại thành dãy [1; 8; 2; 9; 3; 10]
Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:
[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 6;...........]
Vậy số thứ 2012 của dãy số trên là số nào?
- Giải thích thêm:
Nếu số bắt đầu là [0] tạo đc 2 số nữa là [1] và [2] => ghép lại [0; 1; 2]
Tiếp với dãy số [0; 1; 2] lại tạo được 2 dãy nữa [1; 2; 3] và [2; 3; 4] => ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4]
Tiếp dãy [0; 1; 2; 1; 2; 3; 2; 3; 4] tạo đc 2 dãy [1; 2; 3; 2; 3; 4; 3; 4; 5] và [2; 3; 4; 3; 4; 5; 4; 5; 6]
=> Ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6]
.......................................... cứ như vậy tiếp ~~~~~~~~~~
P/S: Đáp án thầy mình cho là 9 còn cách làm mik không bik
Phân tích đa thức thành nhân tử:
1.45+x^3-5*x^2-9*x
2.x^4-2*x^3-2*x^2-2*x+3
3.x^4-5*x^2+4
4.x^4+64
5.x^5+x^4+1
6.(x^2+2*x)*(x^2+2*x+4)+3
7.(x^3+4*x+8)^2+3*x*(x^2+4*x+8)+2*x^2
8. x^3*(x^2-7)^2-36*x
9.x^5+x+1
10. x^8+x^4+1
11. x^5-x^4-x^3-x^2-x-2
12. x^9-x^7-x^6-x^5+x^4+x^3+x^2-1
13. (x^2-x)^2-12*(x^2-x)+24
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
Bài 1: Tìm số hạng thứ n của các dãy số sau:
a) 3, 8, 15, 24, 35, ...
b) 3, 24, 63, 120, 195, ...
c) 1, 3, 6, 10, 15, ...
d) 2, 5, 10, 17, 26, ...
e) 6, 14, 24, 36, 50, ...
f) 4, 28, 70, 130, 208, ...
g) 2, 5, 9, 14, 20, ...
h) 3, 6, 10, 15, 21,
i) 2, 8, 20, 40, 70, ...
1: 3/x+1 + 2/x+2 = 5x+4/x2+ 3x + 2
2: 2/3x + 1 - 15/6x2-x-1 = 3/2x - 1
3: 9/3x - 1 - 5-x/3x2-4x+1 = 4/x+ 1
4:5/x - 2 + 2/x+4 = 3x/x2 + 2x - 8
5: 4/x+6 + 1/x - 3 = 9/x2 + 3x - 18
6:x/x-3 - 2x2 +9/2x2 - 3x - 9= 1/2x + 3
Tìm x, biết :
a) (x-2)3 +6(x+1)2-x3+12=0
b) (x-5) (x+5) - (x+3)2+3(x-2)2=(x+1)2- (x+4)(x-4)+3x2
c) (2x+3)2 +(x-1)(x+1)=5(x+2)2-(x-5)(x+1)+(x+4)
d) (1-3x)2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2
Giúp mk với ạ, mk cảm ơn !