ta có A=\(\dfrac{6}{8}\)+\(\dfrac{6}{56}\)+\(\dfrac{6}{140}\)+...+\(\dfrac{6}{1100}\)+\(\dfrac{6}{1400}\)
=\(\dfrac{3}{4}\)+\(\dfrac{3}{28}\)+\(\dfrac{3}{70}\)+...+\(\dfrac{3}{550}\)+\(\dfrac{3}{700}\)
=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{22.25}\)+\(\dfrac{3}{25.28}\)
=1-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{10}\)+...+\(\dfrac{1}{22}\)-\(\dfrac{1}{25}\)+\(\dfrac{1}{25}\)-\(\dfrac{1}{28}\)
=1-\(\dfrac{1}{28}\)
=\(\dfrac{27}{28}\)
Vậy A=\(\dfrac{27}{28}\)
Ta có:
A =6/8+6/56+6/140+...+6/1100+6/1400
⇒A=3/4+3/28+3/70+...+3/550+3/700
⇒A=3/1.4+3/4.7+3/7.10+...+3/22.25+3/25.28
⇒A=1−1/4+1/4−1/7+1/7−1/10+...+1/22−1/25+1/25−1/28
⇒A=1−1/28
⇒A=1-1/38
Ta có :
A = 6/8 + 6/56 + 6/140 +...+ 6/1100 + 6/1400
A= 3/4 + 3/28 + 3/70 +...+ 3/550 + 3/700
A= 3/1.4 + 3/4.7 + 3/ 7.10 + 3/22.25 + 3/25.28
A= 1- 1/28
A= 27/28