TN

Tính tổng :

A = 1/1.2 + 1/2.3 + 1/3.4 + ..............+ 1/99.100

B= 1/1.3 + 1/3.5 + 1/5.7 + ...............+ 1/97.99

NT
3 tháng 7 2024 lúc 21:29

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Sửa đề: \(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{97\cdot99}\)

=>\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}\)

Bình luận (0)
VP
3 tháng 7 2024 lúc 21:32

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=1-\dfrac{1}{100}\)

\(A=\dfrac{100}{100}-\dfrac{1}{100}\)

\(A=\dfrac{99}{100}\)

__________________

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(B=\dfrac{1}{2}.\left(1-\dfrac{1}{99}\right)\)

\(B=\dfrac{1}{2}.\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\)

\(B=\dfrac{1}{2}.\dfrac{98}{99}\)

\(B=\dfrac{49}{99}\)

\(#NqHahh\)

Bình luận (0)
H24
3 tháng 7 2024 lúc 21:32

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dots+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

---

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dots+\dfrac{1}{97.99}\) (sửa đề)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dots+\dfrac{2}{97.99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dots+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}.\dfrac{98}{99}=\dfrac{49}{99}\)

Công thức: \(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)

Bình luận (0)
NH
3 tháng 7 2024 lúc 21:33

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{99.100}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) +  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)

A = (\(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)) - (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - ... - (\(\dfrac{1}{99}\) - \(\dfrac{1}{99}\))

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\) - 0 - 0 - ... - 0

A = \(\dfrac{99}{100}\)

Bình luận (0)

Các câu hỏi tương tự
CB
Xem chi tiết
NH
Xem chi tiết
BL
Xem chi tiết
HA
Xem chi tiết
DA
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết