Cho khối đa diện như hình vẽ bên. Trong đó ABC.A' B' C' là khối lăng trụ tam giác đều có tất cả các cạnh đều bằng 1, S.ABC khối chóp tam giác đều có cạnh bên SA=2/3. Mặt phẳng (SA' B' ) chia khối đa diện đã cho thành hai phần. Gọi V 1 là thể tích phần khối đa diện chứa đỉnh A, V 2 là thể tích phần khối đa diện không chứa đỉnh A. Mệnh đề nào sau đây đúng
A. 72 V 1 = 5 V 2
B. 3 V 1 = V 2
C. 24 V 1 = 5 V 2
D. 4 V 1 = 5 V 2
Thể tích của khối tứ diện đều có tất cả các cạnh bằng 3 là:
A. 6 4
B. 3 6 4
C. 3 3
D. 3 2
Tính thể tích của khối tứ diện đều có tất cả các cạnh bằng a.
A. 2 12 a 3
B. a 3
C. 6 a 3
D. 1 12 a 3
Cho tứ diện OABC có OA=a; OB=2a; OC=3a đôi một vuông góc với nhau tại O. Lấy M là trung điểm của cạnh AC; N nằm trên cạnh CB sao cho CN=2/3 CB. Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. a 3 6
C. 2 a 3 3
D. a 3 3
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Tính thể tích V của khối tứ diện ABCD
A. V = a 3 2 12
B. V = a 3 11 24
C. V = a 3 3 4
D. V = a 3 8
Cho khối lăng trụ tam giác đều A B C . A ' B ' C ' có cạnh đáy bằng 2, diện tích tam giác A'BC bằng 3. Tính thể tích của khối lăng trụ
A. 2 5 3
B. 2
C. 2 5
D. 3 2
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 2, diện tích tam giác A’BC bằng 3. Tính thể tích của khối lăng trụ
A. 2 5 3
B. 2
C. 2 5
D. 3 2
Thể tích c m 3 của khối tứ diện đều có cạnh bằng 2/3 cm là:
A. 3 2 81
B. 2 2 81
C. 2 3 81
D. 2 81
Cho hình bát diện đều ABCDEF cạnh a. Tính theo a thể tích V của khối đa diện có các đỉnh là trung điểm của các cạnh xuất phát từ đỉnh A và F của hình bát diện (xem hình vẽ)
A. V = a 3 2 .
B. V = a 3 2 4 .
C. V = a 3 2 2 .
D. V = a 3 2 8 .