`2/(11x13) + 2/(13xx15) + 2/(15xx17) + ... + 2/(97xx99)`
`= 1/11 - 1/13 + 1/13 - 1/15 + 1/15 - 1/17 + ... + 1/97 - 1/99`
`= 1/11 - 1/99`
`= 8/99`
Đúng 2
Bình luận (3)
\(=\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{11}-\dfrac{1}{99}=\dfrac{8}{99}\)
Đúng 1
Bình luận (1)
Đặt \(A=\dfrac{2}{11\times13}+\dfrac{2}{13\times15}+...+\dfrac{2}{97\times99}\)
\(\Rightarrow A=\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Rightarrow A=\dfrac{1}{11}-\dfrac{1}{99}\)
\(\Rightarrow A=\dfrac{9}{99}-\dfrac{1}{99}=\dfrac{8}{99}\)
Đúng 1
Bình luận (0)