Violympic toán 9

H24

1) Giaỉ hệ \(\left\{{}\begin{matrix}\left(x+y\right)^2\left(8x^2+8y^2+4xy-13\right)+5=0\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)

2) Tính P\(=\frac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}\)Với x\(=\sqrt{\frac{1}{2\sqrt{3}-2}-\frac{3}{2\sqrt{3}+2}}\)

NH
25 tháng 11 2019 lúc 20:38

Violympic toán 9

Bình luận (0)
 Khách vãng lai đã xóa
NL
25 tháng 11 2019 lúc 20:46

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}8x^2+8y^2+4xy-13+\frac{5}{\left(x+y\right)^2}=0\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\left(x+y\right)^2+\frac{5}{\left(x+y\right)^2}+10+3\left(x-y\right)^2=23\\x+y+\frac{1}{x+y}+x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\left(x+y+\frac{1}{x+y}\right)^2+\left(x-y\right)^2=23\\x+y+\frac{1}{x+y}+x-y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y+\frac{1}{x+y}=a\\x-y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5a^2+b^2=23\\a+b=1\end{matrix}\right.\) \(\Rightarrow5a^2+\left(1-a\right)^2-23=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PT
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
KZ
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
PQ
Xem chi tiết
NM
Xem chi tiết