Violympic toán 9

CG

Chứng minh rằng \(\sqrt{2017}+\sqrt{2018}< \frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\) .

NT
21 tháng 1 2020 lúc 16:27

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DS
Xem chi tiết
BB
Xem chi tiết
NB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết