\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
= \(\left(\sqrt{\sqrt{14}+\sqrt{5}}\right)^2+2\left(\sqrt{\sqrt{14}+\sqrt{5}}\right).\left(\sqrt{\sqrt{14}+\sqrt{5}}\right)+\left(\sqrt{\sqrt{14}+\sqrt{5}}\right)^2\)
= \(\sqrt{14}+\sqrt{5}+2\left(\sqrt{14-5}\right)+\sqrt{14}+\sqrt{5}\)
= \(2\sqrt{14}+2\sqrt{5}+18\)
= 22 + \(2\sqrt{5}\)