\(D=\left(100^2+98^2+...+2^2\right)-\left(99^2+97^2+...+1^2\right)\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=100\cdot\dfrac{101}{2}=50\cdot101=5050\)