Lời giải:
Biến đổi: \(P=\frac{3}{4}-\frac{y+z}{4x}+\frac{3}{4}-\frac{x+z}{4y}+\frac{3}{4}-\frac{x+y}{4z}\)
\(\Leftrightarrow P=\frac{9}{4}-\frac{1}{4}\underbrace{\left(\frac{x+y}{z}+\frac{x+z}{y}+\frac{z+y}{x}\right)}_{M}\)
Xét M
Áp dụng BĐT Am-Gm: \(M\geq 3\sqrt[3]{\frac{(x+y)(y+z)(z+x)}{xyz}}\)
Tiếp tục Am-Gm: \((x+y)(y+z)(z+x)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
\(\Rightarrow M\geq 3\sqrt[3]{8}=6\)
Do đó \(P=\frac{9}{4}-\frac{M}{4}\leq \frac{9}{4}-\frac{6}{4}\Leftrightarrow M\leq \frac{3}{4}\)
Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow x=y=z\)