NP

Tính giá trị của đa thức P=x3+x2y-2x2-xy-y2+3y+x+2017 với x+y=2

Giúp với,mình đang cần gấp lắm ạ!

 

Bài làm

Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

          P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017

          P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019

          P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019

Mà x + y = 2 => x + y - 2 = 0

Thay x + y - 2 = 0 và đa thức P, ta được:

P = x. 0 - y . 0 + 0 + 2019

P = 0 - 0 + 0 + 2019

P = 2019

Vậy P = 2019 tại x + y = 2

# Học tốt #

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 10 2019 lúc 20:20

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(x+y-2\right)+2019\)

\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(P=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(P=0+2019=2019\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
30 tháng 10 2019 lúc 20:24

Ta có

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Leftrightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2017\)

\(\Leftrightarrow\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+2019\)

\(\Leftrightarrow x^2\cdot\left(x+y-2\right)-y\cdot\left(x+y-2\right)+\left(x+y-2\right)+2019\)

Ta có \(x+y=2\Rightarrow x+y-2=0\)

\(\Rightarrow P=2019\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DH
Xem chi tiết
CA
Xem chi tiết
CT
Xem chi tiết
NV
Xem chi tiết
NN
Xem chi tiết
NC
Xem chi tiết
NN
Xem chi tiết
NV
Xem chi tiết
TT
Xem chi tiết