§1. Bất đẳng thức

DH

Tính giá trị của đa thức \(M=2x^4+3x^2y^2+y^4+2y^2\)
biết \(x^2+y^2=2\)

ML
13 tháng 5 2016 lúc 19:34

M=2\(x^4\)+3\(x^2y^2\)+\(y^4\)+2\(y^2\)

M= (2\(x^4\)+ 2\(x^2y^2\)) +(\(x^2y^2\)+\(y^4\))+2\(y^2\)

M=2\(x^2\)(\(x^2\)+\(y^2\))+\(y^2\).(\(x^2\)+\(y^2\))+2\(y^2\)

M=2\(x^2\).2+\(y^2\).2+2\(y^2\)

M=4\(x^2\)+4\(y^2\)

M=4.(\(x^2\)+\(y^2\))

M=4.2=8

vậy M=8

Bình luận (0)
DH
15 tháng 5 2016 lúc 8:59

Bạn ơi cái chỗ đoạn \(2x^2\left(x^2y^2\right)+y^2.\left(x^2y^2\right)+2y^2\)                                                                                                                                           ĐOạn đó bạn khi rõ ra cho mk tách kiểu j để được như vậy ko b.Chỗ đó mk ko hiểu

Bình luận (0)
ML
15 tháng 5 2016 lúc 9:25

(2\(x^4\)+2\(x^2\)\(y^2\)) +(\(x^2\)\(y^2\)+\(y^4\))+2\(y^2\)

=(2.\(x^2\).\(x^2\)+2\(x^2\).\(y^2\))+(\(x^2\).\(y^2\)+\(y^2\).\(y^2\))+2\(y^2\)

=2\(x^2\).(\(x^2\)+\(y^2\))+\(y^2\).(\(x^2\)+\(y^2\))+2\(y^2\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
PO
Xem chi tiết
NJ
Xem chi tiết
PV
Xem chi tiết
LA
Xem chi tiết
DT
Xem chi tiết
SN
Xem chi tiết