Giả sử biểu thức xác định
\(\frac{-2}{x-y}-\left(\frac{2xy}{\left(x-y\right)\left(x+y\right)}+\frac{x-y}{2\left(x+y\right)}\right).\frac{2x}{x\left(x+y\right)}\)
\(=\frac{-2}{x-y}-\left(\frac{4xy+\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\frac{2}{x+y}\)
\(=\frac{-2}{x-y}-\frac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}.\frac{2}{x+y}\)
\(=\frac{-2}{x-y}-\frac{1}{x-y}=\frac{-3}{x-y}=\frac{-3}{2011}\)
\(\frac{2}{y-x}\cdot\left(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\right):\frac{x^2+xy}{2x}=\frac{2}{y-x}\cdot\left(\frac{4xy}{2\left(x-y\right)\left(x+y\right)}+\frac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}\right):\frac{x^2+xy}{2x}\)
\(=\frac{2}{y-x}\cdot\left(\frac{4xy+x^2-2xy+y^2}{2\left(x+y\right)\left(x-y\right)}\right)\cdot\frac{2x}{x\left(x+y\right)}=\frac{2}{y-x}\cdot\frac{\left(x+y\right)^2\cdot2x}{2\left(x+y\right)\left(x-y\right)\cdot x\left(x+y\right)}=\frac{2}{y-x}\cdot\frac{1}{x-y}\)
\(=\frac{2}{-\left(x-y\right)}\cdot\frac{1}{x-y}\)
Mà x - y = 2011
\(\Rightarrow\frac{2}{-\left(x-y\right)}+\frac{1}{x-y}=\frac{-2}{2011}+\frac{1}{2011}=\frac{-1}{2011}\)