a) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\)\(=\sqrt{4-4\sqrt{2}+2}+\sqrt{18-2.3\sqrt{2}.1+1}=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)\(=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)
= / 2 - \(\sqrt{2}\) / + / 3\(\sqrt{2}\) - 1/
= 2 - \(\sqrt{2}\) + 3\(\sqrt{2}\) - 1
= 2\(\sqrt{2}\) + 1
b) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{45-2.3.\sqrt{5}+1}-\sqrt{20-2.3.2.\sqrt{5}+9}\)
\(=\sqrt{\left(3\sqrt{5}-1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
= / 3\(\sqrt{5}\) - 1/ - / 2\(\sqrt{5}\) - 3/
= 3\(\sqrt{5}\) - 1 - 2\(\sqrt{5}\) + 3
= \(\sqrt{5}\) + 2
c) \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}.\sqrt{2}+2}-\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
= / \(\sqrt{5}\) - \(\sqrt{2}\) / - / \(\sqrt{5}\) - 1 /
= 1 - \(\sqrt{2}\)
a) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\)
\(=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-1\)
\(=2\sqrt{2}+1\)