1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
\(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\)
2. Tính:
a. 2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b. \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}\)
c. \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
Rút gọn
\(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{18}}\)
\(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right).\left(15+2\sqrt{6}\right)\)
b1. Rút gọn
a)\(\frac{5\sqrt{6}+6\sqrt{5}}{\sqrt{5}+\sqrt{6}}\)
b) \(\frac{2\sqrt{7}-4\sqrt{3}}{3\sqrt{35}-6\sqrt{15}}\)
c) \(\frac{12\sqrt{10}-16\sqrt{14}}{6\sqrt{5}-8\sqrt{7}}\)
d) \(\frac{6\sqrt{6}-27}{2\sqrt{2}-3\sqrt{3}}\)
e) \(\frac{-4\sqrt{2}+3\sqrt{5}}{-2\sqrt{10}}\)
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
a. \(\sqrt{21+6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
b. \(\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
c. \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
d.\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
e. \(\sqrt{\frac{9}{4}-\sqrt{2}}+\sqrt{2}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
BT: Tính
a, \(\sqrt{13}.\sqrt{52}\)
b, \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}\)
c, \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
d, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
e, \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}\)
f, \(\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
g, \(\left(\sqrt{18}+\sqrt{32}-\sqrt{50}\right).\sqrt{2}\)
h, \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
k, \(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
l, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
m, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
n, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
p, \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
q, \(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{3}\)
1] rút gọn
a) (\(\sqrt{12}\) + \(3\sqrt{5}\) - \(4\sqrt{135}\)) 13
b) \(\sqrt{252}\) - \(\sqrt{700}\) + \(\sqrt{1008}\) - \(\sqrt{448}\)
c) \(2\sqrt{40\sqrt{12}}\) - \(2\sqrt{\sqrt{75}}\) -\(3\sqrt{5\sqrt{48}}\)
2]
a) A= \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b) B= \(\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
c) C= \(\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Bài 1 : Rút gọn
a) \(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Bài 2: Chứng minh
a)\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=8\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)