Đặt \(A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{50}}\)
=>\(7A=1+\dfrac{1}{7}+...+\dfrac{1}{7^{49}}\)
=>\(7A-A=1+\dfrac{1}{7}+...+\dfrac{1}{7^{49}}-\dfrac{1}{7}-\dfrac{1}{7^2}-...-\dfrac{1}{7^{50}}\)
=>\(6A=1-\dfrac{1}{7^{50}}\)
=>\(A=\dfrac{1}{6}-\dfrac{1}{6\cdot7^{50}}\)
\(C=A+\dfrac{1}{6\cdot7^{50}}=\dfrac{1}{6}-\dfrac{1}{6\cdot7^{50}}+\dfrac{1}{6\cdot7^{50}}=\dfrac{1}{6}\)
Đúng 1
Bình luận (0)