DA

\(timx\\\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)

DD
17 tháng 4 2016 lúc 13:15

Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2009}\)

\(\Leftrightarrow x+1=2009\)

\(\Leftrightarrow x=2008\)

Vậy x = 2008

Bình luận (0)
NT
17 tháng 4 2016 lúc 13:15

\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)

\(=>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(=>1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(=>\frac{x}{x+1}=\frac{2008}{2009}=>x=2008\)

Bình luận (0)
NS
17 tháng 4 2016 lúc 19:54

Thế :

cái cuối đau cần đâu oho

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
BH
Xem chi tiết
NP
Xem chi tiết
NH
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PS
Xem chi tiết
BB
Xem chi tiết