a: Ta có: \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)
a: Ta có: \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)
tìm x,y biết:
a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)
Chọn câu trả lời đúng \(\left(2x+\dfrac{1}{5}\right)\left(-\dfrac{3}{5}x+\dfrac{4}{7}\right)=0\) thì:
A. x = \(\dfrac{-1}{10}\) hoặc x = \(\dfrac{20}{21}\)
B. x = \(\dfrac{20}{21}\)
C. x = \(-\dfrac{1}{10}\)
D. x = \(-\dfrac{20}{21}\)
2. Tìm x
a. \(\dfrac{4}{5}-3.\left|x\right|=\dfrac{1}{5}\) b. \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
c. (2x-8)(10-5x)=0 d. \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
Tìm x, biết:
a) \(\dfrac{1}{20}\) - (x - \(\dfrac{8}{5}\)) = \(\dfrac{1}{10}\)
b) \(\dfrac{7}{4}\) - (x + \(\dfrac{5}{3}\)) = \(\dfrac{-12}{5}\)
c) x - [\(\dfrac{17}{2}\) - \(\left(\dfrac{-3}{7}+\dfrac{5}{3}\right)\)] = \(\dfrac{-1}{3}\)
cho x1;x2 là các giá trị của x;y1;y2 là giá trị tương ứng của y
A) biết x;y tỉ lệ thuận và x1=2;x2=3;y1=\(\dfrac{1}{2}\) tìm x2?
B) biết x;y tỉ lệ nghịch và x1=\(\dfrac{1}{2}\) ; y1=4;y2=-4 tìm x2?
Tìm x,y biết: \(\dfrac{x}{2}=\dfrac{y}{-5}\)và x-y=14
A.x=-4; y=-10; B.x=4; y=10; C. x=4; y=-10 D.x=-4; y=1
a)A=\(\dfrac{5}{X}+\dfrac{Y}{5}+\dfrac{1}{Z}\) tại X=\(\dfrac{1}{2}\); Y=20; Z=\(\dfrac{-1}{4}\)
b)B=\(\dfrac{4x+7y}{x-3y}tại\dfrac{y}{x}=\dfrac{1}{4}\) (x,y khác 0)
Tìm x, biết:
a) \(\dfrac{-1}{10}\) + \(\dfrac{2}{5}\)x + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
b) \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\) : x= \(-\dfrac{1}{5}\)
c) \(-\dfrac{2}{3}\) : x + \(\dfrac{5}{8}\) = \(-\dfrac{7}{12}\)