=>x*(2+căn 3)=5
=>x=5/2+căn 3=5(2-căn 3)=10-5căn 3
=>x*(2+căn 3)=5
=>x=5/2+căn 3=5(2-căn 3)=10-5căn 3
` P = ( (3+x)/(3-x) - (3-x)/(3+x) - (4x^2)/( x^2-9) ) . ( (5)/(3-x) - (4x+2)/(3x-x^2) ) `
a) Rút gọn
b) Tính P với `x^2 - 4x + 3 = 0 `
c) Tìm x để P > 0
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P = -4
g) Tìm GTNN của P với x thuộc Z
h) Tìm x để P > 4x
\(C=\left(\dfrac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\dfrac{5}{2\sqrt{x}-3}\right)\div\left(3+\dfrac{2}{1-\sqrt{x}}\right)\)
a) Rút gọn C
b) Tính C với \(x=\dfrac{2}{2-\sqrt{3}}\)
c) Tìm x để C= –1
d) Tìm x để C > 0
e) So sánh C’ với –2
f) Tìm GRNN của C’ với C’=\(\dfrac{1}{C}\times\dfrac{1}{\sqrt{x}+1}\)
i)Tìm \(x\in Z\) để \(C'\in Z\) g) Tìm m để pt C’.m = –1 có nghiệm
Bài 1: Tìm đa thức bậc 7 nhận \(x=\sqrt[7]{\dfrac{3}{5}}+\sqrt[7]{\dfrac{5}{3}}\) làm nghiệm
Bài 2: Tìm a, b, c để \(ax^2+bx+c⋮x+2\) và chia \(x^2-1\) dư \(x+5\)
A=(x/x+3 - 2/x-3 + x^2-1/9-x^2):(2- x+5/3+x)
a;rút gọn biểu thức A
b;tìm A biết |x|=1
c;tìm x biết a=1/2
d; tìm các giá trị thuộc z để a thuộc giá trị nguyên
cho A= \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
1, rút gọn A, tìm ĐKXĐ
2, tìm x để A< 1
3 Tìm GTNN khi B= (x-9). A
Tìm x, biết:
1/ căn x^2 -4 - căn x-2=0
2/ căn x+5=1+căn x
3/ căn x+5+ căn 5-x=0
4/ căn x+5+ căn 5-x=4
5/ căn 3-x+ căn x-5=10
bài 3 tìm đkxđ của mỗi bt sau
a)\(\sqrt{x-2}+\sqrt{x+3}\)
b)\(\dfrac{\sqrt{5-x}}{x-5}\)
c)\(\dfrac{\sqrt{2-x}}{\left(x+1\right)\cdot\sqrt{x+3}}\)
tìm x biết a (x-2)^2+(x+3)^2-4(x+1)=5
b (2x-3)(2x+3)-(x-1)^2-3x(x-5)=-44
c (5x+1)^2-(5x+3)(5x-3)=30
d (x+3)^2+(x-2)(x+2)-2(x-1)^2=7
tìm x khi x = \(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}+2\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.