\(\sqrt{\left(x-2014\right)^{2014}}+\sqrt{\left(x-2015\right)^{2016}}=1\)
Tìm x, y biết: \(\left|x-2014\right|+\left|x-2016\right|+\left|y-2016\right|+\left|x\right|=2016\)
Cho các số x , y thỏa mãn :
\(\left(x+\sqrt{x^2}+2016\right)\left(y+\sqrt{y^2}+2016\right)=2016\)
Tìm giá trị của biểu thức \(P=x^{2015}+y^{2015}+2016\left(x+y\right)+1\)
Tìm x biết là x số dương
\(\left(1+x+\sqrt{x^2-1}\right)^{2015}+\left(1+x-\sqrt{x^2-1}\right)^{2015}=2^{2016}\)
\(\left(x-1\right)^{2014}+\left(x-2\right)^{2016}=1\)
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
Cho PT \(2x^2-4mx+2m^2-1=0\). Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ phân biệt thỏa:
\(\left(2x_1^{2016}-4mx_1^{2015}+\left(2m^2-1\right)x_1^{2014}+1\right)\left(2x_2^2+4mx_1+2m^2-9\right)< 0\)
Tìm x biết :\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2003\right)\left(x+2014\right)}=\frac{14}{15}\)
Cho đa thức f(x)=x3-3x2+3x+3
Chứng minh: \(f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)