Ẩn danh

tìm x

a, \(\left(x+2\right)^3-\left(x+1\right)\left(x^2-1+1\right)-6\left(x-1\right)^2=23\)

b, \(\left(x+3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)+11=0\)

c, \(x\left(x-3\right)-x+3=0\)

d, \(\left(x-1\right)\left(x+2\right)-2x-4=0\)

e, \(x^3-3x^2-4x+12=0\)

f, \(9\left(x-1\right)-x^3+x^2=0\)

g, \(x^3-2x^2+x-2=0\)

h, \(\left(9-x^2\right)\left(2x+1\right)=0\)

NT

a: Sửa đề: \(\left(x+2\right)^3-\left(x+1\right)\left(x^2-x+1\right)-6\left(x-1\right)^2=23\)

=>\(x^3+6x^2+12x+8-\left(x^3-1\right)-6\left(x^2-2x+1\right)=23\)

=>\(x^3+6x^2+12x+8-x^3+1-6x^2+12x-6=23\)

=>24x+3=23

=>24x=20

=>\(x=\dfrac{20}{24}=\dfrac{5}{6}\)

b: \(\left(x+3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)+11=0\)

=>\(x^3+3x^2+9x+3x^2+9x+27-x\left(x^2-4\right)+11=0\)

=>\(x^3+6x^2+18x+27-x^3+4x+11=0\)

=>\(6x^2+22x+38=0\)

\(\Delta=22^2-4\cdot6\cdot38=-428< 0\)

=>Phương trình vô nghiệm

c: x(x-3)-x+3=0

=>x(x-3)-(x-3)=0

=>(x-3)(x-1)=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

d: \(\left(x-1\right)\left(x+2\right)-2x-4=0\)

=>\(\left(x-1\right)\left(x+2\right)-2\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

e: \(x^3-3x^2-4x+12=0\)

=>\(x^2\left(x-3\right)-4\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x^2-4\right)=0\)

=>(x-3)(x-2)(x+2)=0

=>\(\left[{}\begin{matrix}x-3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)

f: \(9\left(x-1\right)-x^3+x^2=0\)

=>\(9\left(x-1\right)-x^2\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(9-x^2\right)=0\)
=>\(\left(x-1\right)\left(3-x\right)\left(3+x\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-3\end{matrix}\right.\)

g: \(x^3-2x^2+x-2=0\)

=>\(x^2\left(x-2\right)+\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2=0

=>x=2

h: \(\left(9-x^2\right)\left(2x+1\right)=0\)

=>(3-x)(3+x)(2x+1)=0

=>\(\left[{}\begin{matrix}3-x=0\\3+x=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
PL
Xem chi tiết
PH
Xem chi tiết
TL
Xem chi tiết
BL
Xem chi tiết
DA
Xem chi tiết
8D
Xem chi tiết
MB
Xem chi tiết
BL
Xem chi tiết
MX
Xem chi tiết