\(3\times\left(\frac{x}{4}+\frac{x}{28}+\frac{x}{70}+\frac{x}{130}\right)=\frac{60}{13}\)
=> \(\frac{x}{4}+\frac{x}{28}+\frac{x}{70}+\frac{x}{130}=\frac{20}{13}\)
=> \(\frac{x}{1\cdot4}+\frac{x}{4\cdot7}+\frac{x}{7\cdot10}+\frac{x}{10\cdot13}=\frac{20}{13}\)
=> \(\frac{x}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}\right)=\frac{20}{13}\)
=> \(\frac{x}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{13}\right)=\frac{20}{13}\)
=> \(\frac{x}{3}\left(1-\frac{1}{13}\right)=\frac{20}{13}\)
=> \(\frac{x}{3}\cdot\frac{12}{13}=\frac{20}{13}\)
=> \(\frac{x}{3}=\frac{20}{13}:\frac{12}{13}=\frac{20}{13}\cdot\frac{13}{12}=\frac{5}{3}\)
=> x = 5
\(3\cdot\left(\frac{x}{4}+\frac{x}{28}+\frac{x}{70}+\frac{x}{130}\right)=\frac{60}{13}\)
\(3\cdot\left(\frac{x}{1\cdot4}+\frac{x}{4\cdot7}+\frac{x}{7\cdot10}+\frac{x}{10\cdot13}\right)=\frac{60}{13}\)
\(3\left(x-3\right)\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}\right)=\frac{60}{13}\)
\(\left(3x-9\right)\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}\right)=\frac{60}{13}\)
\(\left(3x-9\right)\left(1-\frac{1}{13}\right)=\frac{60}{13}\)
\(\left(3x-9\right)\cdot\frac{12}{13}=\frac{60}{13}\)
\(3x-9=\frac{\frac{60}{13}}{\frac{12}{13}}\)
\(3x-9=5\)
\(3x=5+9\)
\(3x=14\)
\(x=\frac{14}{3}\approx4,667\)
\(3.\left(\frac{x}{4}+\frac{x}{28}+\frac{x}{70}+\frac{x}{130}\right)=\frac{60}{13}\)
\(3.\left(\frac{x}{1.4}+\frac{x}{4.7}+\frac{x}{7.10}+\frac{x}{10.13}\right)=\frac{60}{13}\)
\(3.\frac{x}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}\right)=\frac{60}{13}\)
\(x.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}\right)=\frac{60}{13}\)
\(x.\left(1-\frac{1}{13}\right)=\frac{60}{13}\)
\(x.\frac{12}{13}=\frac{60}{13}\)
\(x=\frac{60}{13}\div\frac{12}{13}\)
\(x=5\)