\(4\left(x^2-2xy+y^2\right)+5\left(4x^2y^2-28xy+49\right)=5\)
\(\Leftrightarrow4\left(x-y\right)^2+5\left(2xy-7\right)^2=5\)
- Nếu \(2xy-7\ne0\Rightarrow\left(2xy-7\right)^2>1\Rightarrow5\left(2xy-7\right)^2>5\)
\(\Rightarrow4\left(x-y\right)^2< 0\) (vô lý)
Vậy \(2xy-7=0\)
Mà do x, y nguyên nên \(2xy\) chẵn \(\Rightarrow2xy-7\ne0\) \(\forall x;y\in Z\)
Vậy pt ko có nghiệm nguyên