\(\Leftrightarrow x^2+2x-3,5=0\\ \Leftrightarrow2x^2+4x-7=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-9=0\\ \Leftrightarrow2\left[\left(x+1\right)^2-\dfrac{9}{2}\right]=0\\ \Leftrightarrow\left(x+1-\dfrac{3}{\sqrt{2}}\right)\left(x+1+\dfrac{3}{\sqrt{2}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{\sqrt{2}}-1=\dfrac{3-\sqrt{2}}{\sqrt{2}}\\x=\dfrac{3}{\sqrt{2}}+1=\dfrac{3+\sqrt{2}}{\sqrt{2}}\end{matrix}\right.\)