Ta có x(x+1)(x+2)(x+3) = (x2 + 3x)(x2 + 3x + 2) = b2
Đặt x2 + 3x = a ta có
a(a + 2) = b2
<=> a2 + 2a - b2 = 0
<=> (a + 1)2 - b2 = 1
<=> (a + 1 + b)(a + 1 - b) = 1
Vì a,b nguyên nên ( + 1 + b, a + 1 - b) = (1, 1; -1, -1)
Thế vào giải tiếp là ra
Ta có x(x+1)(x+2)(x+3) = (x2 + 3x)(x2 + 3x + 2) = b2
Đặt x2 + 3x = a ta có
a(a + 2) = b2
<=> a2 + 2a - b2 = 0
<=> (a + 1)2 - b2 = 1
<=> (a + 1 + b)(a + 1 - b) = 1
Vì a,b nguyên nên ( + 1 + b, a + 1 - b) = (1, 1; -1, -1)
Thế vào giải tiếp là ra
Tìm x thuộc z để
x4+x3+x2+x+1 là số chính phương
tìm x thuộc Z sao cho A= x(x+1)(x-7)(x-8) là 1 số chính phương
tìm 3 số dương x, y, z sao cho x^2+y^2+z^2+2xy+2x(z-1)+2y(z+1)là số chính phương
Tìm các số nguyên m và n để đa thức P(x) = x^4 + mx^3 + 29x^2 + nx + 4(n thuộc Z) là một số chính phương.
Tìm các số nguyên a và b sao cho
P(x)=x^4+ax^3+29x^2+bx+4 là số chính phương (x thuộc Z)
Cho đa thức f(x)=\(x^4+mx^3+29x^2+nx+4\) (x thuộc Z).Tìm m.n sao cho f(x) là số chính phương(m,n>=0)
tìm x thuộc Z để x3+x2+x+1 là lập phương của 1 số tự nhiên
CMR:
S=(x+1)(x+2)(x+3)(x+4)+1 luôn luôn là 1 số chính phương ∀ x ∈ Z
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương