\(\Leftrightarrow\left[{}\begin{matrix}x\ge\sqrt{30}+10\\x\le-\sqrt{30}+10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\sqrt{30}+10\\x\le-\sqrt{30}+10\end{matrix}\right.\)
tìm x thoả mãn
\(\left(x+2\right)\left(\sqrt{2x+3}+\sqrt{x+1}\right)+\sqrt{2x^2+5x+3}=1\left(với:x\ge-1\right)\)
Bài 4: Cho biểu thức: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right).\left(\dfrac{\sqrt{x}-7}{\sqrt{x+1}}+1\right)\) với x \(\ge\) 0 và x \(\ne\) 9
a) Rút gọn P
b) Tìm các giá trị của x để P \(\ge\) \(\dfrac{1}{2}\)
c) Tìm GTNN của P
Cần gấp !!!
Đề 7:
Bài 4:
\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right).\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right),\) với \(x\ge0,x\ne9\)
a) Rút gọn P
b) Tìm các giá trị của x để P \(\ge\) \(\dfrac{-1}{2}\)
c) Tìm GTNN của P
cho \(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right).\)
Tìm x để A \(\ge\frac{3}{2}\)
\(\sqrt{x^2+xy+y^2}=\sqrt{\left(x+y\right)^2-xy}\ge\sqrt{\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2}=\frac{x+y}{2}.\sqrt{3}\)
cmtt=>\(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)=3\)
cho \(x\ge-\frac{3}{2}\).Tìm GTLN của
\(M=\sqrt{\left(2x+3\right)\left(x+4\right)}+2\sqrt{x+5}-2x\)
Cho C=\(\sqrt{x+7-6\sqrt{x-2}}+\sqrt{x+23-10\sqrt{x-2}}\)
a, Tìm tập xác định của C
b, Tìm GTNN của C, giá trị tương ứng của x
Mk lm đc đến đây rồi
C=\(\sqrt{\left(\sqrt{x-2}-5\right)^2}+\sqrt{\left(3-\sqrt{x-2}\right)^2}\)
=\(|\sqrt{x-2}-5|+|3-\sqrt{x-2}|\ge|\sqrt{x-2}-5+3-\sqrt{x-2}|=-2\)
mà mk thấy cũng có thể C=\(\sqrt{\left(5-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}\)
Thì khi đó GTNN của C lại bằng 2
Các bn giải thích hộ mk vs. Mình cảm ơn
Cho biểu thức \(A=\frac{\sqrt{1-\sqrt{1-x^2}}\left[\left(\sqrt{1+x}\right)^3+\left(\sqrt{1-x}\right)^3\right]}{2-\sqrt{1-x^2}}\)
a) Rút gọn A
b) Tìm x biết A \(\ge\frac{1}{2}\)
Cho biểu thức \(A=\frac{\sqrt{1-\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right]}{2-\sqrt{1-x^2}}\)
a) Rút gọn A
b) Tìm x biết \(A\ge\frac{1}{2}\)
cho \(x\ge-\frac{3}{2}\). Tìm giá trị lớn nhất của biểu thức: \(M=\sqrt{\left(2x+3\right)\left(x+4\right)}+2\sqrt{x+5}-2x\)