Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Tìm điệu kiện của x để các biểu thức sau có nghĩa
a) \(\sqrt{-4x+16}\) h) \(\frac{\sqrt{3x-12}}{x-5}\)
b) \(\sqrt{\frac{-3}{2x-1}}\) k) \(\sqrt{x-1}\div\frac{x-2}{x-3}\)
c) \(\sqrt{-5x^2}\) m) \(\sqrt{\frac{2x-3}{x-2}}+\frac{1}{x-4}\)
d) \(\sqrt{\frac{-3}{-x^2-4x-4}}\)
e) \(\sqrt{\frac{2x-4}{-3}}\)
f) \(\frac{\sqrt{3x-9}}{\sqrt{2x-8}}\)
Tìm x để căn thức sau có nghĩa:
a, \(\sqrt{x-5}\)
b, \(\sqrt{\frac{1-4x}{x^2}}\)
c, \(\sqrt{\frac{2x-1}{\sqrt{3}-2}}\)
d, \(\frac{2x-3}{\sqrt{2x-1}}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa
a) \(\sqrt{\frac{-3x+2}{x^2+3}}\)
b) \(\sqrt{\frac{2x-3}{x^2-2x+4}}\)
c) \(\frac{x}{x^2-4}+\sqrt{x+2}\)
d) \(\sqrt{9x^2-6x+1}\)
e) \(\sqrt{x^2-9}\)
f) \(\sqrt{16-x^2}\)
g) \(\sqrt{x}+\frac{1}{\sqrt{x-1}}\)
h) \(\sqrt{x^2-8x-9}\)
i) \(\sqrt{\frac{x-6}{x-2}}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Tìm x để các biểu thức có nghĩa:
a) \(\sqrt{2x-5}+\frac{1}{2x-9}\)
b) \(\sqrt{9-x}+\sqrt{x-5}\)
c) \(\sqrt{\frac{x-5}{x+2}}\)
d) \(\sqrt{x^2-8x+7}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
Bài 1: Cho biểu thức: M = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
Tìm điều kiện để M có nghĩa, rút gọn M