Để A có giá trị không dương hay \(A\le0\)
\(=>\left(x^2+1\right)\left(x-2\right)\left(x+3\right)\le0\)
\(=>\left(x-2\right)\left(x+3\right)\le0\) ( Vì : \(x^2+1\ge1>0\forall x\) )
\(=>\left\{{}\begin{matrix}x-2\le0\\x+3\ge0\end{matrix}\right.\) ( Vì : \(x+3>x-2\forall x\) )
\(=>\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\)
\(=>-3\le x\le2\)
A = (\(x^2\) + 1).(\(x-2\)).(\(x+3\)). Lập bảng xét dấu ta có:
\(x\) | \(-3\) 2 |
\(x^2\) + 1 | + + + + |
\(x\) - 2 | - - 0 + |
\(x\) + 3 | - 0 + + |
A | + 0 - 0 + |
Theo bảng trên ta có: -3 ≤ \(x\) ≤ 2