`\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0` `ĐK: x >= 1/2`
`<=>\sqrt{(2x-1)^2}+\sqrt{2x-1}=0`
`<=>|2x-1|+\sqrt{2x-1}=0`
Vì `x >= 1/2<=>2x-1 >= 0=>|2x-1|=2x-1`
`=>2x-1+\sqrt{2x-1}=0`
`<=>\sqrt{2x-1}(\sqrt{2x-1}+1)=0`
Vì `\sqrt{2x-1}+1 > 0`
`=>\sqrt{2x-1}=0`
`<=>2x-1=0`
`<=>x=1/2` (t/m)
Vậy `S={1/2}`
\(\Leftrightarrow\left|2x-1\right|=-\sqrt{2x-1}\)
=>2x-1=0
hay x=1/2
`=> sqrt ( 2x - 1)^2 = - sqrt (2x - 1)`
`=> | 2x - 1| = - sqrt ( 2x - 1)`
`=> 2x - 1 = 0`
`=> x = 1/2`.