Ta có: \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2022}\right)\cdot x=\dfrac{2021}{1}+\dfrac{2020}{2}+...+\dfrac{1}{2021}\)
=>\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2022}\right)\cdot x=\left(1+\dfrac{1}{2021}\right)+\left(1+\dfrac{2}{2020}\right)+...+\left(1+\dfrac{2020}{2}\right)+1\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2022}\right)=\dfrac{2022}{2021}+\dfrac{2022}{2020}+...+\dfrac{2022}{2}+\dfrac{2022}{2022}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2022}\right)=2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2022}\right)\)
=>x=2022