`#040911`
`a)`
`2x^2 - 3x = 0`
`\Rightarrow x(2x - 3) = 0`
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, \(x\in\left\{0;\dfrac{3}{2}\right\}\)
`b)`
\(x+\dfrac{1}{2}-z-\dfrac{2}{3}=\dfrac{1}{2}?\)
Bạn xem lại đề
`c)`
\(x^3-x^2=0\\ \Rightarrow x^2\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, \(x\in\left\{0;1\right\}.\)
\(a,2x^2-3x=0\\ \Leftrightarrow x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\\ b,Xem.lại,đề\\ c,x^3-x^2=0\\ \Leftrightarrow x^2.\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b, \(x\) + \(\dfrac{1}{2}\) - \(x\) - \(\dfrac{2}{3}\) = \(\dfrac{1}{2}\)
\(x\) - \(x\) = \(\dfrac{1}{2}\) + \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)
0 = \(\dfrac{2}{3}\) (vô lý)
Vậy không có giá trị nào của \(x\) là nghiệm của phương trình đã cho.
Kết luận: \(x\) \(\in\) \(\varnothing\)