TB

Tìm tất cả các số tự nhiên n để 4n + 5 và 9n + 7 đều là các số chính phương.

TH
9 tháng 3 2022 lúc 22:17

-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)

\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)

\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)

\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)

\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)

-Vì \(3a-2b< 3a+2b\)

\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)

-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
TB
Xem chi tiết
KT
Xem chi tiết
NT
Xem chi tiết
CC
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
TH
Xem chi tiết
HD
Xem chi tiết