BH

Tìm tất cả các số thực a; b; c thỏa mãn a+b+c=3/a=4/b=9/c

NT
2 tháng 7 2021 lúc 11:44

Ta có: \(\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}\)

nên \(\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}=\dfrac{3+4+9}{a+b+c}=\dfrac{16}{a+b+c}\)

Ta có: \(a+b+c=\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}\)

\(\Leftrightarrow a+b+c=\dfrac{16}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=4\\a+b+c=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}=4\\\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}=-4\end{matrix}\right.\)

Trường hợp 1: \(\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}=4\)

nên \(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=1\\c=\dfrac{9}{4}\end{matrix}\right.\)

Trường hợp 2: \(\dfrac{3}{a}=\dfrac{4}{b}=\dfrac{9}{c}=-4\)

nên \(\left\{{}\begin{matrix}a=\dfrac{-3}{4}\\b=-1\\c=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy: \(\left(a,b,c\right)\in\left\{\left(\dfrac{3}{4};1;\dfrac{9}{4}\right);\left(-\dfrac{3}{4};-1;-\dfrac{9}{4}\right)\right\}\)

Bình luận (0)

Các câu hỏi tương tự
BH
Xem chi tiết
N1
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
CK
Xem chi tiết
NC
Xem chi tiết